
Week 13 - Monday



 What did we talk about last time?
 Work time for Assignment 8
 Before that:
 More class examples
 Solar system









 The example we did of the solar system was a simulation
 Using (totally unrealistic) physics

 Those kinds of simulations can be useful for scientists trying 
to model behavior

 Real simulations are much more complex
 Important example: weather forecasting

 These kinds of simulations are continuous simulations
because they show the system evolving continuously as time 
goes on



 Discrete event simulations are another kind of simulation
 In these, events happen at particular times
 Then, the system progresses onward after each time step, 

based on what happened
 The elements of the system that can act are sometimes called 

agents
 Discrete event simulations are good for modeling situations 

like agents shopping, standing in line, visiting the BMV, etc.
 Another possibility is modeling an ecosystem



 Our ecosystem simulation will contain fish and bears
 They will exist on a grid
 Only one creature can exist at any location on the grid
 Each turn, one creature is randomly selected to come alive 

and do actions
 Fish can breed, move, and die
 Bears can breed, move, eat, and die
 To model this simulation, we will create objects for the world, 

for fish, and for bears



 A World object knows:
 Its maximum x and y dimensions
 All the lifeforms present inside it
 A grid with the locations of each lifeform

 A World object should be able to:
 Return its dimensions
 Add a lifeform to a specific location
 Delete a lifeform
 Move a lifeform to a new location
 See if a location is empty
 Return a lifeform at a specific location
 Allow a lifeform to live for one time unit
 Draw itself



 A Bear object knows:
 The World it's inside of
 Its location in the world (x and y)
 How long since it has eaten
 How long since it has bred

 A Bear object should be able to:
 Return its location (x and y)
 Set the World it belongs to
 Show up if it's been born
 Hide if it's died
 Change locations
 Live for a time unit



 A Fish object knows:
 The World it's inside of
 Its location in the world (x and y)
 How long since it has bred

 A Fish object should be able to:
 Return its location (x and y)
 Set the World it belongs to
 Show up if it's been born
 Hide if it's died
 Change locations
 Live for a time unit



 The Unified Modeling Language (UML) is an 
international standard for making diagrams of 
software systems

 One of the most commonly used diagrams is 
called a class diagram

 One standard for class diagrams has three 
sections:
 Name
 Instance variables
 Methods

 To the right is an example of what that looks like

Class Name

Instance variables

Methods



 Here is a UML class diagram for the 
World class

World

maxX
maxY
thingList
grid
turtle
screen

draw
getMaxX
getMaxY
addThing
deleteThing
moveThing
live
emptyLocation
lookAtLocation



 Here is a UML class diagram for the 
Bear class

Bear

x
y
world
breedTick
starveTick
turtle

getX
getY
setX
setY
setWorld
appear
hide
move
live
tryToBreed
tryToMove
tryToEat



 Here is a UML class diagram for the 
Fish class

Fish

x
y
world
breedTick
turtle

getX
getY
setX
setY
setWorld
appear
hide
move
live
tryToMove





 Create a constructor for World with the following header:

 It should:
 Initialize the maxX and maxY instance variables
 Make thingList an empty list
 Make grid a 2D list (a list of lists) containing maxY rows and maxX columns, all of 

which should contain None
 Create a turtle
 Create a screen
 Set the screen's world coordinates to match the maxX and maxY
 Hide the turtle

def __init__(self, maxX, maxY):



 Write the following accessors for World

def getMaxX(self):

def getMaxY(self):

def emptyLocation(self, x, y): 
# True if grid at y, x is empty

def lookAtLocation(self, x, y): 
# Returns contents of grid at y, x



 Write a method with the following header:

 It should:
 Set the x and y of thing to the appropriate values
 Put thing into the grid at the appropriate location
 Set the world of thing to the appropriate value
 Add the thing to the thingList
 Tell thing to appear

def addThing(self, thing, x, y):



 Write a method with the following header:

 It should:
 Hide the thing
 Set the location of thing in the grid to None
 Remove thing from thingList

def deleteThing(self, thing):



 Write a method with the following header:

 It should:
 Set the new location in grid to whatever is in the old location
 Set the old location in grid to None

def moveThing(self, oldX, oldY, newX, newY):



 Write a method with the following header:

 It should:
 Check to see if there's anything in thingList
 If there is, pick a random one
 Tell that thing to live

def life(self):



 To save time, here's code to draw the grid:
def draw(self):

self.screen.tracer(0)
# draw bounding box
self.turtle.forward(self.maxX - 1)
self.turtle.left(90)
self.turtle.forward(self.maxY - 1)
self.turtle.left(90)
self.turtle.forward(self.maxX - 1)
self.turtle.left(90)
self.turtle.forward(self.maxY - 1)
self.turtle.left(90)
# draw horizontal lines
for y in range(self.maxY - 1):

self.turtle.forward(self.maxX - 1)
self.turtle.backward(self.maxX - 1)
self.turtle.left(90)
self.turtle.forward(1)
self.turtle.right(90)

self.turtle.forward(1)
self.turtle.right(90)
# draw vertical lines
for x in range(self.maxX - 2):

self.turtle.forward(self.maxY - 1)
self.turtle.backward(self.maxY - 1)
self.turtle.left(90)
self.turtle.forward(1)
self.turtle.right(90)

self.screen.tracer(1)





 Create a constructor for Fish with the following header:

 It should:
 Create a turtle
 Put the turtle's tail up
 Hide the turtle
 Set the turtle's shape to a triangle (since we don't have cool bear and fish pictures like 

the book does)
 Set the x and y to 0
 Set the world to None
 Set the breedTick to 0

def __init__(self):



 Write the following accessors for Fish

def getX(self):

def getY(self):



 Write the following mutators for Fish

def setX(self, x):

def setY(self, y):

def setWorld(self, world):

def appear(self): # move turtle to x and y and show

def hide(self): # hide turtle



 Write a method with the following header:

 It should:
 Tell world to move a thing from the current x and y to the new ones
 Set the x and y values to the new ones
 Move the turtle the new location as well

def move(self, newX, newY):





 Bear class
 Adding behaviors to Fish and Bear objects
 The isinstance() function



 Work on Assignment 9
 Due Friday

 Keep reading Chapter 11
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