
Week 13 - Monday

 What did we talk about last time?
 Work time for Assignment 8
 Before that:
 More class examples
 Solar system

 The example we did of the solar system was a simulation
 Using (totally unrealistic) physics

 Those kinds of simulations can be useful for scientists trying
to model behavior

 Real simulations are much more complex
 Important example: weather forecasting

 These kinds of simulations are continuous simulations
because they show the system evolving continuously as time
goes on

 Discrete event simulations are another kind of simulation
 In these, events happen at particular times
 Then, the system progresses onward after each time step,

based on what happened
 The elements of the system that can act are sometimes called

agents
 Discrete event simulations are good for modeling situations

like agents shopping, standing in line, visiting the BMV, etc.
 Another possibility is modeling an ecosystem

 Our ecosystem simulation will contain fish and bears
 They will exist on a grid
 Only one creature can exist at any location on the grid
 Each turn, one creature is randomly selected to come alive

and do actions
 Fish can breed, move, and die
 Bears can breed, move, eat, and die
 To model this simulation, we will create objects for the world,

for fish, and for bears

 A World object knows:
 Its maximum x and y dimensions
 All the lifeforms present inside it
 A grid with the locations of each lifeform

 A World object should be able to:
 Return its dimensions
 Add a lifeform to a specific location
 Delete a lifeform
 Move a lifeform to a new location
 See if a location is empty
 Return a lifeform at a specific location
 Allow a lifeform to live for one time unit
 Draw itself

 A Bear object knows:
 The World it's inside of
 Its location in the world (x and y)
 How long since it has eaten
 How long since it has bred

 A Bear object should be able to:
 Return its location (x and y)
 Set the World it belongs to
 Show up if it's been born
 Hide if it's died
 Change locations
 Live for a time unit

 A Fish object knows:
 The World it's inside of
 Its location in the world (x and y)
 How long since it has bred

 A Fish object should be able to:
 Return its location (x and y)
 Set the World it belongs to
 Show up if it's been born
 Hide if it's died
 Change locations
 Live for a time unit

 The Unified Modeling Language (UML) is an
international standard for making diagrams of
software systems

 One of the most commonly used diagrams is
called a class diagram

 One standard for class diagrams has three
sections:
 Name
 Instance variables
 Methods

 To the right is an example of what that looks like

Class Name

Instance variables

Methods

 Here is a UML class diagram for the
World class

World

maxX
maxY
thingList
grid
turtle
screen

draw
getMaxX
getMaxY
addThing
deleteThing
moveThing
live
emptyLocation
lookAtLocation

 Here is a UML class diagram for the
Bear class

Bear

x
y
world
breedTick
starveTick
turtle

getX
getY
setX
setY
setWorld
appear
hide
move
live
tryToBreed
tryToMove
tryToEat

 Here is a UML class diagram for the
Fish class

Fish

x
y
world
breedTick
turtle

getX
getY
setX
setY
setWorld
appear
hide
move
live
tryToMove

 Create a constructor for World with the following header:

 It should:
 Initialize the maxX and maxY instance variables
 Make thingList an empty list
 Make grid a 2D list (a list of lists) containing maxY rows and maxX columns, all of

which should contain None
 Create a turtle
 Create a screen
 Set the screen's world coordinates to match the maxX and maxY
 Hide the turtle

def __init__(self, maxX, maxY):

 Write the following accessors for World

def getMaxX(self):

def getMaxY(self):

def emptyLocation(self, x, y):
True if grid at y, x is empty

def lookAtLocation(self, x, y):
Returns contents of grid at y, x

 Write a method with the following header:

 It should:
 Set the x and y of thing to the appropriate values
 Put thing into the grid at the appropriate location
 Set the world of thing to the appropriate value
 Add the thing to the thingList
 Tell thing to appear

def addThing(self, thing, x, y):

 Write a method with the following header:

 It should:
 Hide the thing
 Set the location of thing in the grid to None
 Remove thing from thingList

def deleteThing(self, thing):

 Write a method with the following header:

 It should:
 Set the new location in grid to whatever is in the old location
 Set the old location in grid to None

def moveThing(self, oldX, oldY, newX, newY):

 Write a method with the following header:

 It should:
 Check to see if there's anything in thingList
 If there is, pick a random one
 Tell that thing to live

def life(self):

 To save time, here's code to draw the grid:
def draw(self):

self.screen.tracer(0)
draw bounding box
self.turtle.forward(self.maxX - 1)
self.turtle.left(90)
self.turtle.forward(self.maxY - 1)
self.turtle.left(90)
self.turtle.forward(self.maxX - 1)
self.turtle.left(90)
self.turtle.forward(self.maxY - 1)
self.turtle.left(90)
draw horizontal lines
for y in range(self.maxY - 1):

self.turtle.forward(self.maxX - 1)
self.turtle.backward(self.maxX - 1)
self.turtle.left(90)
self.turtle.forward(1)
self.turtle.right(90)

self.turtle.forward(1)
self.turtle.right(90)
draw vertical lines
for x in range(self.maxX - 2):

self.turtle.forward(self.maxY - 1)
self.turtle.backward(self.maxY - 1)
self.turtle.left(90)
self.turtle.forward(1)
self.turtle.right(90)

self.screen.tracer(1)

 Create a constructor for Fish with the following header:

 It should:
 Create a turtle
 Put the turtle's tail up
 Hide the turtle
 Set the turtle's shape to a triangle (since we don't have cool bear and fish pictures like

the book does)
 Set the x and y to 0
 Set the world to None
 Set the breedTick to 0

def __init__(self):

 Write the following accessors for Fish

def getX(self):

def getY(self):

 Write the following mutators for Fish

def setX(self, x):

def setY(self, y):

def setWorld(self, world):

def appear(self): # move turtle to x and y and show

def hide(self): # hide turtle

 Write a method with the following header:

 It should:
 Tell world to move a thing from the current x and y to the new ones
 Set the x and y values to the new ones
 Move the turtle the new location as well

def move(self, newX, newY):

 Bear class
 Adding behaviors to Fish and Bear objects
 The isinstance() function

 Work on Assignment 9
 Due Friday

 Keep reading Chapter 11

	COMP 1800
	Last time
	Questions?
	Assignment 9
	Simulation
	Continuous simulations
	Discrete event simulations
	Ecosystem
	World
	Bear
	Fish
	UML
	Class diagram for World
	Class diagram for Bear
	Class diagram for Fish
	World Class
	Implementing World
	Accessors for World
	addThing() method for World
	deleteThing() method for World
	moveThing() method for World
	live() method for World
	draw() method for World
	Fish Class
	Implementing Fish
	Accessors for Fish
	Mutators for Fish
	move() method for Fish
	Upcoming
	Next time…
	Reminders

